Construction of Banach spaces using a generalization of the scalar product
Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 67-76
Voir la notice de l'article provenant de la source Math-Net.Ru
A vector is assigned to every pair of elements of a linear space. If this vector is in $l_2$
and the relation between the element pair and the vector satisfies a certain system of axioms,
then we call the space a Banach space. For such a space we introduce, as in the case of the
usual scalar product, a series of concepts, and prove, as an example a theorem concerning
orthogonal expansion.
@article{MZM_1970_8_1_a7,
author = {N. N. Chaus},
title = {Construction of {Banach} spaces using a generalization of the scalar product},
journal = {Matemati\v{c}eskie zametki},
pages = {67--76},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a7/}
}
N. N. Chaus. Construction of Banach spaces using a generalization of the scalar product. Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 67-76. http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a7/