$P$-separation of variables in Laplace's equation
Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 121-127
Cet article a éte moissonné depuis la source Math-Net.Ru
The $P$-separation of variables in Laplace's equation $\Delta_2u=0$ in flat $n$-dimensional space $S_n$ is proved to be equivalent to the complete separation of variables in the invariant Laplace equation $$ \Delta u\equiv \left\{\Delta_2+\frac{n-2}{4(n-1)}R\right\}u=0, $$ in a space $V_n$ of constant curvature $K\ne0$ ($\Delta$ is the invariant Laplacian, and $R$ is the scalar curvature, all in $V_n$).
@article{MZM_1970_8_1_a13,
author = {I. I. Tugov},
title = {$P$-separation of variables in {Laplace's} equation},
journal = {Matemati\v{c}eskie zametki},
pages = {121--127},
year = {1970},
volume = {8},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a13/}
}
I. I. Tugov. $P$-separation of variables in Laplace's equation. Matematičeskie zametki, Tome 8 (1970) no. 1, pp. 121-127. http://geodesic.mathdoc.fr/item/MZM_1970_8_1_a13/