Order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators
Matematičeskie zametki, Tome 7 (1970) no. 6, pp. 723-732.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate is obtained of the order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators specified by a class of nonnegative functions whose Fourier transforms have support concentrated in a closed region of $n$-dimensional Euclidean space.
@article{MZM_1970_7_6_a8,
     author = {A. I. Kamzolov},
     title = {Order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {723--732},
     publisher = {mathdoc},
     volume = {7},
     number = {6},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_6_a8/}
}
TY  - JOUR
AU  - A. I. Kamzolov
TI  - Order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators
JO  - Matematičeskie zametki
PY  - 1970
SP  - 723
EP  - 732
VL  - 7
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_6_a8/
LA  - ru
ID  - MZM_1970_7_6_a8
ER  - 
%0 Journal Article
%A A. I. Kamzolov
%T Order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators
%J Matematičeskie zametki
%D 1970
%P 723-732
%V 7
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_6_a8/
%G ru
%F MZM_1970_7_6_a8
A. I. Kamzolov. Order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators. Matematičeskie zametki, Tome 7 (1970) no. 6, pp. 723-732. http://geodesic.mathdoc.fr/item/MZM_1970_7_6_a8/