Order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators
Matematičeskie zametki, Tome 7 (1970) no. 6, pp. 723-732
Cet article a éte moissonné depuis la source Math-Net.Ru
An estimate is obtained of the order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators specified by a class of nonnegative functions whose Fourier transforms have support concentrated in a closed region of $n$-dimensional Euclidean space.
@article{MZM_1970_7_6_a8,
author = {A. I. Kamzolov},
title = {Order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators},
journal = {Matemati\v{c}eskie zametki},
pages = {723--732},
year = {1970},
volume = {7},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_6_a8/}
}
A. I. Kamzolov. Order of approximation of functions of the class $Z_2(E^n)$ by linear positive convolution operators. Matematičeskie zametki, Tome 7 (1970) no. 6, pp. 723-732. http://geodesic.mathdoc.fr/item/MZM_1970_7_6_a8/