Radii of convexity and close-to-convexity of certain integral representations
Matematičeskie zametki, Tome 7 (1970) no. 5, pp. 581-592.

Voir la notice de l'article provenant de la source Math-Net.Ru

Strict upper bounds are determined for $|s(z)|$, $|\mathrm{Re}\,s(z)|$, and $|\mathrm{Im}\,s(z)|$ in the class of functions $s(z)=a_nz^n+a_{n+1}z^{n+1}+\dots$ ($n\geqslant1$) regular in $|z|1$ and satisfying the condition $$ |u(\theta_1)-u(\theta_2)|\leqslant K|\theta_1-\theta_2|, $$ where $u(\theta)=\mathrm{Re}\,s(e^{i\theta})$, $K>0$, and $\theta_1$ and $\theta_2$ are arbitrary real numbers. These bounds are used in the determination of radii of convexity and close-to-convexity of certain integral representations.
@article{MZM_1970_7_5_a6,
     author = {F. G. Avkhadiev},
     title = {Radii of convexity and close-to-convexity of certain integral representations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {581--592},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_5_a6/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Radii of convexity and close-to-convexity of certain integral representations
JO  - Matematičeskie zametki
PY  - 1970
SP  - 581
EP  - 592
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_5_a6/
LA  - ru
ID  - MZM_1970_7_5_a6
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Radii of convexity and close-to-convexity of certain integral representations
%J Matematičeskie zametki
%D 1970
%P 581-592
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_5_a6/
%G ru
%F MZM_1970_7_5_a6
F. G. Avkhadiev. Radii of convexity and close-to-convexity of certain integral representations. Matematičeskie zametki, Tome 7 (1970) no. 5, pp. 581-592. http://geodesic.mathdoc.fr/item/MZM_1970_7_5_a6/