An estimate of an incomplete linear form in several algebraic numbers
Matematičeskie zametki, Tome 7 (1970) no. 5, pp. 569-580
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mu>m-1$, let $\nu$ be a rational number, and let $\omega_k=b_k^\nu$, where $b_k\ne0$ are distinct numbers of an imaginary quadratic field $K$, which satisfy some additional conditions. Then \begin{gather*} |x_1\omega_1+\dots+x_m\omega_m|>X^{-\mu},\\ X=\max_{1\leqslant k\leqslant m}|x_k|\geqslant X_0>0,\\ \end{gather*} where $x_1,\dots,x_m$ are integers of the field $K$, and $X_0$ is an effective constant.
@article{MZM_1970_7_5_a5,
author = {N. I. Fel'dman},
title = {An estimate of an incomplete linear form in several algebraic numbers},
journal = {Matemati\v{c}eskie zametki},
pages = {569--580},
year = {1970},
volume = {7},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_5_a5/}
}
N. I. Fel'dman. An estimate of an incomplete linear form in several algebraic numbers. Matematičeskie zametki, Tome 7 (1970) no. 5, pp. 569-580. http://geodesic.mathdoc.fr/item/MZM_1970_7_5_a5/