An estimate of an incomplete linear form in several algebraic numbers
Matematičeskie zametki, Tome 7 (1970) no. 5, pp. 569-580.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu>m-1$, let $\nu$ be a rational number, and let $\omega_k=b_k^\nu$, where $b_k\ne0$ are distinct numbers of an imaginary quadratic field $K$, which satisfy some additional conditions. Then \begin{gather*} |x_1\omega_1+\dots+x_m\omega_m|>X^{-\mu},\\ X=\max_{1\leqslant k\leqslant m}|x_k|\geqslant X_0>0,\\ \end{gather*} where $x_1,\dots,x_m$ are integers of the field $K$, and $X_0$ is an effective constant.
@article{MZM_1970_7_5_a5,
     author = {N. I. Fel'dman},
     title = {An estimate of an incomplete linear form in several algebraic numbers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {569--580},
     publisher = {mathdoc},
     volume = {7},
     number = {5},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_5_a5/}
}
TY  - JOUR
AU  - N. I. Fel'dman
TI  - An estimate of an incomplete linear form in several algebraic numbers
JO  - Matematičeskie zametki
PY  - 1970
SP  - 569
EP  - 580
VL  - 7
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_5_a5/
LA  - ru
ID  - MZM_1970_7_5_a5
ER  - 
%0 Journal Article
%A N. I. Fel'dman
%T An estimate of an incomplete linear form in several algebraic numbers
%J Matematičeskie zametki
%D 1970
%P 569-580
%V 7
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_5_a5/
%G ru
%F MZM_1970_7_5_a5
N. I. Fel'dman. An estimate of an incomplete linear form in several algebraic numbers. Matematičeskie zametki, Tome 7 (1970) no. 5, pp. 569-580. http://geodesic.mathdoc.fr/item/MZM_1970_7_5_a5/