On the maximal dual pairs of invariant subspaces of $J$-self-adjoint operators
Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 443-447
Cet article a éte moissonné depuis la source Math-Net.Ru
In the $J$-spaces $\mathfrak{H}=\mathfrak{H}_1\oplus\mathfrak{H}_2$, with the infinite-dimensional components $\mathfrak{H}_k=P_k\mathfrak{H}$ ($k=1,2$), we can always find an operator $A$, for which there are at least two distinct invariant maximal dual pairs, such that if $[x,x]=0$ and $[Ax,x]=0$, then $x=0$.
@article{MZM_1970_7_4_a8,
author = {H. Langer},
title = {On the maximal dual pairs of invariant subspaces of $J$-self-adjoint operators},
journal = {Matemati\v{c}eskie zametki},
pages = {443--447},
year = {1970},
volume = {7},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a8/}
}
H. Langer. On the maximal dual pairs of invariant subspaces of $J$-self-adjoint operators. Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 443-447. http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a8/