Linear method for the approximation of differentiable functions
Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 423-430
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is devoted to the problem of the approximation of functions in the metric of space $L_p(0, 1)$, the $s$-th derivative of the functions being continuous and the $(s+1)$-th derivative belonging to the space $L_q(0, 1)$, with $p,q\geqslant1$, by spline functions of order $s$ with fixed “almost” uniform nodes.
@article{MZM_1970_7_4_a6,
author = {Yu. N. Subbotin},
title = {Linear method for the approximation of differentiable functions},
journal = {Matemati\v{c}eskie zametki},
pages = {423--430},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a6/}
}
Yu. N. Subbotin. Linear method for the approximation of differentiable functions. Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 423-430. http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a6/