Some extremal properties of positive trigonometric polynomials
Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 411-422
Voir la notice de l'article provenant de la source Math-Net.Ru
A class $P_n$ of even positive trigonometric polynomials $t_n(\varphi)=a_0+a_1\cos\varphi+\dots+a_n\cos n\varphi$,
satisfying the conditions: $a_k\geqslant0$ ($k=0,1,\dots,n$), $a_0$ is considered.
The behavior of the sequence of functionals
$$
V_n=\inf_{t_n\in P_n}\frac{t_n(0)-a_0}{(\sqrt{a_1}-\sqrt{a_0})^2},
$$
is studied; two-sided estimations are given for $V_n$ and $V_\infty=\lim\limits_{n\to\infty}V_n$.
@article{MZM_1970_7_4_a5,
author = {S. B. Stechkin},
title = {Some extremal properties of positive trigonometric polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {411--422},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a5/}
}
S. B. Stechkin. Some extremal properties of positive trigonometric polynomials. Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 411-422. http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a5/