Some extremal properties of positive trigonometric polynomials
Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 411-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class $P_n$ of even positive trigonometric polynomials $t_n(\varphi)=a_0+a_1\cos\varphi+\dots+a_n\cos n\varphi$, satisfying the conditions: $a_k\geqslant0$ ($k=0,1,\dots,n$), $a_0$ is considered. The behavior of the sequence of functionals $$ V_n=\inf_{t_n\in P_n}\frac{t_n(0)-a_0}{(\sqrt{a_1}-\sqrt{a_0})^2}, $$ is studied; two-sided estimations are given for $V_n$ and $V_\infty=\lim\limits_{n\to\infty}V_n$.
@article{MZM_1970_7_4_a5,
     author = {S. B. Stechkin},
     title = {Some extremal properties of positive trigonometric polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {411--422},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a5/}
}
TY  - JOUR
AU  - S. B. Stechkin
TI  - Some extremal properties of positive trigonometric polynomials
JO  - Matematičeskie zametki
PY  - 1970
SP  - 411
EP  - 422
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a5/
LA  - ru
ID  - MZM_1970_7_4_a5
ER  - 
%0 Journal Article
%A S. B. Stechkin
%T Some extremal properties of positive trigonometric polynomials
%J Matematičeskie zametki
%D 1970
%P 411-422
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a5/
%G ru
%F MZM_1970_7_4_a5
S. B. Stechkin. Some extremal properties of positive trigonometric polynomials. Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 411-422. http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a5/