On the set of sums of a functional series
Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 403-410
Voir la notice de l'article provenant de la source Math-Net.Ru
A positive answer is given to one of Banach's problems on the set of sums of a functional series for various permutations of its terms. The problem is solved subject to one restricting condition, that $\sum_{n=1}^\infty f_n^2(x)\infty$ almost everywhere in $[0, 1]$.
@article{MZM_1970_7_4_a4,
author = {E. M. Nikishin},
title = {On the set of sums of a functional series},
journal = {Matemati\v{c}eskie zametki},
pages = {403--410},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a4/}
}
E. M. Nikishin. On the set of sums of a functional series. Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 403-410. http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a4/