On the set of sums of a functional series
Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 403-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

A positive answer is given to one of Banach's problems on the set of sums of a functional series for various permutations of its terms. The problem is solved subject to one restricting condition, that $\sum_{n=1}^\infty f_n^2(x)\infty$ almost everywhere in $[0, 1]$.
@article{MZM_1970_7_4_a4,
     author = {E. M. Nikishin},
     title = {On the set of sums of a functional series},
     journal = {Matemati\v{c}eskie zametki},
     pages = {403--410},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a4/}
}
TY  - JOUR
AU  - E. M. Nikishin
TI  - On the set of sums of a functional series
JO  - Matematičeskie zametki
PY  - 1970
SP  - 403
EP  - 410
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a4/
LA  - ru
ID  - MZM_1970_7_4_a4
ER  - 
%0 Journal Article
%A E. M. Nikishin
%T On the set of sums of a functional series
%J Matematičeskie zametki
%D 1970
%P 403-410
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a4/
%G ru
%F MZM_1970_7_4_a4
E. M. Nikishin. On the set of sums of a functional series. Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 403-410. http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a4/