Spectrum of an elliptic equation
Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 495-502
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the spectrum for the first boundary-value problem for a second-order elliptic equation always lies in the half-plane $\lambda_0\leqslant\mathrm{Re}\,z$, where $\lambda_0$ is the leading eigenvalue to which there corresponds a nonnegative eigenfunction. Apart from $\lambda_0$, there are no other points of the spectrum on the straight line $\mathrm{Re}\,z=\lambda_0$.
@article{MZM_1970_7_4_a14,
author = {A. G. Aslanyan and V. B. Lidskii},
title = {Spectrum of an elliptic equation},
journal = {Matemati\v{c}eskie zametki},
pages = {495--502},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a14/}
}
A. G. Aslanyan; V. B. Lidskii. Spectrum of an elliptic equation. Matematičeskie zametki, Tome 7 (1970) no. 4, pp. 495-502. http://geodesic.mathdoc.fr/item/MZM_1970_7_4_a14/