Normed spaces in which the unit sphere has no bias
Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 307-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the class of normed spaces in which the unit sphere has no bias (the midpoint of the segment joining two arbitrary normalized elements is, among the points of this segment, the one nearest to the zero element).
@article{MZM_1970_7_3_a6,
     author = {N. I. Gurarii and Yu. I. Sozonov},
     title = {Normed spaces in which the unit sphere has no bias},
     journal = {Matemati\v{c}eskie zametki},
     pages = {307--310},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a6/}
}
TY  - JOUR
AU  - N. I. Gurarii
AU  - Yu. I. Sozonov
TI  - Normed spaces in which the unit sphere has no bias
JO  - Matematičeskie zametki
PY  - 1970
SP  - 307
EP  - 310
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a6/
LA  - ru
ID  - MZM_1970_7_3_a6
ER  - 
%0 Journal Article
%A N. I. Gurarii
%A Yu. I. Sozonov
%T Normed spaces in which the unit sphere has no bias
%J Matematičeskie zametki
%D 1970
%P 307-310
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a6/
%G ru
%F MZM_1970_7_3_a6
N. I. Gurarii; Yu. I. Sozonov. Normed spaces in which the unit sphere has no bias. Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 307-310. http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a6/