Completeness in analytic spaces of subsequences of Laguerre and Jacobi polynomials
Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 299-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $\mathfrak{U}_R$ of all single-valued functions analytic in the circle $|z|$ ($0$), with compact convergence topology, some new tests are found for the completeness of the system of Laguerre polynomials $\{L_{n_j}^{(\alpha)}(z)\}$. An analogous question is considered also in one special analytic space for the Jacobi polynomials.
@article{MZM_1970_7_3_a5,
     author = {N. I. Nagnibida},
     title = {Completeness in analytic spaces of subsequences of {Laguerre} and {Jacobi} polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {299--306},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a5/}
}
TY  - JOUR
AU  - N. I. Nagnibida
TI  - Completeness in analytic spaces of subsequences of Laguerre and Jacobi polynomials
JO  - Matematičeskie zametki
PY  - 1970
SP  - 299
EP  - 306
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a5/
LA  - ru
ID  - MZM_1970_7_3_a5
ER  - 
%0 Journal Article
%A N. I. Nagnibida
%T Completeness in analytic spaces of subsequences of Laguerre and Jacobi polynomials
%J Matematičeskie zametki
%D 1970
%P 299-306
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a5/
%G ru
%F MZM_1970_7_3_a5
N. I. Nagnibida. Completeness in analytic spaces of subsequences of Laguerre and Jacobi polynomials. Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 299-306. http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a5/