Completeness in analytic spaces of subsequences of Laguerre and Jacobi polynomials
Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 299-306
Voir la notice de l'article provenant de la source Math-Net.Ru
In the space $\mathfrak{U}_R$ of all single-valued functions analytic in the circle $|z|$ ($0$), with compact convergence topology, some new tests are found for the completeness of the system of Laguerre polynomials $\{L_{n_j}^{(\alpha)}(z)\}$. An analogous question is considered also in one special analytic space for the Jacobi polynomials.
@article{MZM_1970_7_3_a5,
author = {N. I. Nagnibida},
title = {Completeness in analytic spaces of subsequences of {Laguerre} and {Jacobi} polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {299--306},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a5/}
}
N. I. Nagnibida. Completeness in analytic spaces of subsequences of Laguerre and Jacobi polynomials. Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 299-306. http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a5/