Bounds connected with the stability theorems of H.~Cramer
Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 281-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

The deviation of the components of an approximate normal distribution from a normal type distribution is estimated in the metric of spaces $L_p$ ($1\leqslant p\leqslant\infty$) and in the metric of Levy.
@article{MZM_1970_7_3_a2,
     author = {S. G. Maloshevskii},
     title = {Bounds connected with the stability theorems of {H.~Cramer}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {281--288},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a2/}
}
TY  - JOUR
AU  - S. G. Maloshevskii
TI  - Bounds connected with the stability theorems of H.~Cramer
JO  - Matematičeskie zametki
PY  - 1970
SP  - 281
EP  - 288
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a2/
LA  - ru
ID  - MZM_1970_7_3_a2
ER  - 
%0 Journal Article
%A S. G. Maloshevskii
%T Bounds connected with the stability theorems of H.~Cramer
%J Matematičeskie zametki
%D 1970
%P 281-288
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a2/
%G ru
%F MZM_1970_7_3_a2
S. G. Maloshevskii. Bounds connected with the stability theorems of H.~Cramer. Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 281-288. http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a2/