A ring of quotients
Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 349-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Sigma$ be a radical filter in a ring $R$, and let the ring $Q$ be defined by the equation $Q=\mathrm{Hom}_H(E, E)$, where $H=\mathrm{Hom}_R(E, E)$ and $E$ is the $\Sigma$-envelope of the ring. We show that the ring $Q$ possesses the properties of a ring of quotients and coincides with the ring of quotients in the sense of Gabriel and Bourbaki if the annihilator of any ideal $I\in\Sigma$ is equal to zero.
@article{MZM_1970_7_3_a12,
     author = {L. Sh. Ioffe},
     title = {A ring of quotients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {349--358},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a12/}
}
TY  - JOUR
AU  - L. Sh. Ioffe
TI  - A ring of quotients
JO  - Matematičeskie zametki
PY  - 1970
SP  - 349
EP  - 358
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a12/
LA  - ru
ID  - MZM_1970_7_3_a12
ER  - 
%0 Journal Article
%A L. Sh. Ioffe
%T A ring of quotients
%J Matematičeskie zametki
%D 1970
%P 349-358
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a12/
%G ru
%F MZM_1970_7_3_a12
L. Sh. Ioffe. A ring of quotients. Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 349-358. http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a12/