A ring of quotients
Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 349-358
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\Sigma$ be a radical filter in a ring $R$, and let the ring $Q$ be defined by the equation $Q=\mathrm{Hom}_H(E, E)$, where $H=\mathrm{Hom}_R(E, E)$ and $E$ is the $\Sigma$-envelope of the ring. We show that the ring $Q$ possesses the properties of a ring of quotients and coincides with the ring of quotients in the sense of Gabriel and Bourbaki if the annihilator of any ideal $I\in\Sigma$ is equal to zero.
@article{MZM_1970_7_3_a12,
author = {L. Sh. Ioffe},
title = {A ring of quotients},
journal = {Matemati\v{c}eskie zametki},
pages = {349--358},
year = {1970},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a12/}
}
L. Sh. Ioffe. A ring of quotients. Matematičeskie zametki, Tome 7 (1970) no. 3, pp. 349-358. http://geodesic.mathdoc.fr/item/MZM_1970_7_3_a12/