On approximating the roots of some transcendental equations
Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 203-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of an approximation by means of algebraic numbers of fixed degree of the roots of the equation $P(z, a^z)=0$, $a\in \mathbf{A}$, $a\ne0; 1$, where $P(x, y)$ is a polynomial with integral rational coefficients.
@article{MZM_1970_7_2_a7,
     author = {A. A. Shmelev},
     title = {On approximating the roots of some transcendental equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {203--209},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a7/}
}
TY  - JOUR
AU  - A. A. Shmelev
TI  - On approximating the roots of some transcendental equations
JO  - Matematičeskie zametki
PY  - 1970
SP  - 203
EP  - 209
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a7/
LA  - ru
ID  - MZM_1970_7_2_a7
ER  - 
%0 Journal Article
%A A. A. Shmelev
%T On approximating the roots of some transcendental equations
%J Matematičeskie zametki
%D 1970
%P 203-209
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a7/
%G ru
%F MZM_1970_7_2_a7
A. A. Shmelev. On approximating the roots of some transcendental equations. Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 203-209. http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a7/