Some complete sets of complementary elements of the symmetric and the alternating group of the $n$-th degree
Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 173-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that some classes $\mathfrak{H}$ of conjugate elements in a symmetric and in an alternating group are complete sets of complementing elements, i.e., subsets such that for each non-identity element $A$ of the group there exists an element $B\in\mathfrak{H}$ such that $A$ and $B$ generate the group.
@article{MZM_1970_7_2_a4,
     author = {G. Ya. Binder},
     title = {Some complete sets of complementary elements of the symmetric and the alternating group of the $n$-th degree},
     journal = {Matemati\v{c}eskie zametki},
     pages = {173--180},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a4/}
}
TY  - JOUR
AU  - G. Ya. Binder
TI  - Some complete sets of complementary elements of the symmetric and the alternating group of the $n$-th degree
JO  - Matematičeskie zametki
PY  - 1970
SP  - 173
EP  - 180
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a4/
LA  - ru
ID  - MZM_1970_7_2_a4
ER  - 
%0 Journal Article
%A G. Ya. Binder
%T Some complete sets of complementary elements of the symmetric and the alternating group of the $n$-th degree
%J Matematičeskie zametki
%D 1970
%P 173-180
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a4/
%G ru
%F MZM_1970_7_2_a4
G. Ya. Binder. Some complete sets of complementary elements of the symmetric and the alternating group of the $n$-th degree. Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 173-180. http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a4/