Some complete sets of complementary elements of the symmetric and the alternating group of the $n$-th degree
Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 173-180
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that some classes $\mathfrak{H}$ of conjugate elements in a symmetric and in an alternating group are complete sets of complementing elements, i.e., subsets such that for each non-identity element $A$ of the group there exists an element $B\in\mathfrak{H}$ such that $A$ and $B$ generate the group.
@article{MZM_1970_7_2_a4,
author = {G. Ya. Binder},
title = {Some complete sets of complementary elements of the symmetric and the alternating group of the $n$-th degree},
journal = {Matemati\v{c}eskie zametki},
pages = {173--180},
year = {1970},
volume = {7},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a4/}
}
TY - JOUR AU - G. Ya. Binder TI - Some complete sets of complementary elements of the symmetric and the alternating group of the $n$-th degree JO - Matematičeskie zametki PY - 1970 SP - 173 EP - 180 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a4/ LA - ru ID - MZM_1970_7_2_a4 ER -
G. Ya. Binder. Some complete sets of complementary elements of the symmetric and the alternating group of the $n$-th degree. Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 173-180. http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a4/