Analytic functions which are regular in a disc and smooth on its boundary
Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 165-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is established, asserting that the norm of the derivative $f^{(n)}(z)$ in the space $H^2$ for a function $f(z)$ regular in the disc is not increased if we replace $f$ by the ratio $f(z)/G(z)$, where $G(z)$ is any interior function dividing $f(z)$ whose singular part is of a particular form.
@article{MZM_1970_7_2_a3,
     author = {B. I. Korenblyum and V. S. Korolevich},
     title = {Analytic functions which are regular in a disc and smooth on its boundary},
     journal = {Matemati\v{c}eskie zametki},
     pages = {165--172},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a3/}
}
TY  - JOUR
AU  - B. I. Korenblyum
AU  - V. S. Korolevich
TI  - Analytic functions which are regular in a disc and smooth on its boundary
JO  - Matematičeskie zametki
PY  - 1970
SP  - 165
EP  - 172
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a3/
LA  - ru
ID  - MZM_1970_7_2_a3
ER  - 
%0 Journal Article
%A B. I. Korenblyum
%A V. S. Korolevich
%T Analytic functions which are regular in a disc and smooth on its boundary
%J Matematičeskie zametki
%D 1970
%P 165-172
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a3/
%G ru
%F MZM_1970_7_2_a3
B. I. Korenblyum; V. S. Korolevich. Analytic functions which are regular in a disc and smooth on its boundary. Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 165-172. http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a3/