Theorem of Bartle, Dunford, and Schwartz concerning vector measures
Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 247-254
Voir la notice de l'article provenant de la source Math-Net.Ru
We show the existence, for an arbitrary vector measure $\mu:\Sigma\to X$ (where $X$ is a Banach space and $\Sigma$ is a $\sigma$-algebra of subsets of a set $S$) of a functional $x'\in X'$ ($X'$ is the conjugate space of $X$) such that $\mu$ is absolutely continuous with respect to $\mu_{x'}$, $\mu_{x'}(E)=$, $E\in\Sigma$.
@article{MZM_1970_7_2_a13,
author = {V. I. Rybakov},
title = {Theorem of {Bartle,} {Dunford,} and {Schwartz} concerning vector measures},
journal = {Matemati\v{c}eskie zametki},
pages = {247--254},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a13/}
}
V. I. Rybakov. Theorem of Bartle, Dunford, and Schwartz concerning vector measures. Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 247-254. http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a13/