Transformations which leave a measure quasi-invariant
Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 223-227
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that every countable group $G$ has a faithful representation as an ergodic freely-acting group of transformations of a commutative Neumann algebra $M$ with measure $\mu$, leaving the measure $\mu$ quasi-invariant, while there does not exist a measure $\mu'$ which is equivalent to $\mu$ and invariant with respect to $G$.
@article{MZM_1970_7_2_a10,
author = {V. Ya. Golodets},
title = {Transformations which leave a measure quasi-invariant},
journal = {Matemati\v{c}eskie zametki},
pages = {223--227},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a10/}
}
V. Ya. Golodets. Transformations which leave a measure quasi-invariant. Matematičeskie zametki, Tome 7 (1970) no. 2, pp. 223-227. http://geodesic.mathdoc.fr/item/MZM_1970_7_2_a10/