Existence of discontinuous solutions for simplest semidefinite problems of variational calculus
Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 69-78
Voir la notice de l'article provenant de la source Math-Net.Ru
An existence theorem is proved for discontinuous solutions of a semidefinite quasiregular variational problem concerned with determining $\inf J[y]$, in which the expression under the integral sign is of a special form.
@article{MZM_1970_7_1_a7,
author = {V. N. Koshelev and S. F. Morozov},
title = {Existence of discontinuous solutions for simplest semidefinite problems of variational calculus},
journal = {Matemati\v{c}eskie zametki},
pages = {69--78},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a7/}
}
TY - JOUR AU - V. N. Koshelev AU - S. F. Morozov TI - Existence of discontinuous solutions for simplest semidefinite problems of variational calculus JO - Matematičeskie zametki PY - 1970 SP - 69 EP - 78 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a7/ LA - ru ID - MZM_1970_7_1_a7 ER -
V. N. Koshelev; S. F. Morozov. Existence of discontinuous solutions for simplest semidefinite problems of variational calculus. Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a7/