Existence of discontinuous solutions for simplest semidefinite problems of variational calculus
Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 69-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

An existence theorem is proved for discontinuous solutions of a semidefinite quasiregular variational problem concerned with determining $\inf J[y]$, in which the expression under the integral sign is of a special form.
@article{MZM_1970_7_1_a7,
     author = {V. N. Koshelev and S. F. Morozov},
     title = {Existence of discontinuous solutions for simplest semidefinite problems of variational calculus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a7/}
}
TY  - JOUR
AU  - V. N. Koshelev
AU  - S. F. Morozov
TI  - Existence of discontinuous solutions for simplest semidefinite problems of variational calculus
JO  - Matematičeskie zametki
PY  - 1970
SP  - 69
EP  - 78
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a7/
LA  - ru
ID  - MZM_1970_7_1_a7
ER  - 
%0 Journal Article
%A V. N. Koshelev
%A S. F. Morozov
%T Existence of discontinuous solutions for simplest semidefinite problems of variational calculus
%J Matematičeskie zametki
%D 1970
%P 69-78
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a7/
%G ru
%F MZM_1970_7_1_a7
V. N. Koshelev; S. F. Morozov. Existence of discontinuous solutions for simplest semidefinite problems of variational calculus. Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a7/