Extremal problems for bounded analytic functions with supplementary conditions
Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 63-68
Voir la notice de l'article provenant de la source Math-Net.Ru
The general form of the analytic function bounded in the unit disk which maximizes the functional
$$
\biggl|\sum_{j=1}^R\sum_{i=0}^{n_j}c_{ij}f^{(i)}(\tau_j)\biggr|
$$
is determined. Limitations are imposed on the function in the interior of the disk.
@article{MZM_1970_7_1_a6,
author = {A. N. Kochetkov},
title = {Extremal problems for bounded analytic functions with supplementary conditions},
journal = {Matemati\v{c}eskie zametki},
pages = {63--68},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {1970},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a6/}
}
A. N. Kochetkov. Extremal problems for bounded analytic functions with supplementary conditions. Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 63-68. http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a6/