Unbounded divergence of Fourier series of continuous functions
Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 7-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any given set $E\subset[0,\,2\pi)$, of measure zero, a function $f(t)\in C(0,\,2\pi)$, is constructed whose Fourier series is unboundedly divergent on $E$. If $E$ is closed, there is a function $\varphi(t)\in C(0,2\pi)$, whose Fourier series diverges unboundedly on $E$ and converges on $[0,2\pi)\setminus E$.
@article{MZM_1970_7_1_a1,
     author = {V. V. Buzdalin},
     title = {Unbounded divergence of {Fourier} series of continuous functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {7--18},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1970},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a1/}
}
TY  - JOUR
AU  - V. V. Buzdalin
TI  - Unbounded divergence of Fourier series of continuous functions
JO  - Matematičeskie zametki
PY  - 1970
SP  - 7
EP  - 18
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a1/
LA  - ru
ID  - MZM_1970_7_1_a1
ER  - 
%0 Journal Article
%A V. V. Buzdalin
%T Unbounded divergence of Fourier series of continuous functions
%J Matematičeskie zametki
%D 1970
%P 7-18
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a1/
%G ru
%F MZM_1970_7_1_a1
V. V. Buzdalin. Unbounded divergence of Fourier series of continuous functions. Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 7-18. http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a1/