Unbounded divergence of Fourier series of continuous functions
Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 7-18
Cet article a éte moissonné depuis la source Math-Net.Ru
For any given set $E\subset[0,\,2\pi)$, of measure zero, a function $f(t)\in C(0,\,2\pi)$, is constructed whose Fourier series is unboundedly divergent on $E$. If $E$ is closed, there is a function $\varphi(t)\in C(0,2\pi)$, whose Fourier series diverges unboundedly on $E$ and converges on $[0,2\pi)\setminus E$.
@article{MZM_1970_7_1_a1,
author = {V. V. Buzdalin},
title = {Unbounded divergence of {Fourier} series of continuous functions},
journal = {Matemati\v{c}eskie zametki},
pages = {7--18},
year = {1970},
volume = {7},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a1/}
}
V. V. Buzdalin. Unbounded divergence of Fourier series of continuous functions. Matematičeskie zametki, Tome 7 (1970) no. 1, pp. 7-18. http://geodesic.mathdoc.fr/item/MZM_1970_7_1_a1/