On upper bounds of Fourier--Walsh coefficients
Matematičeskie zametki, Tome 6 (1969) no. 6, pp. 725-736.

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound is established for the upper bounds of the Fourier–Walsh coefficients $a_n(f)$ whose modulus of continuity $\omega(\delta,f)$ does not exceed a given modulus of continuity $\omega(\delta)$. In the case of convex majorants of $\omega(\delta)$, these bounds are attained for individual ordinal numbers $n$.
@article{MZM_1969_6_6_a8,
     author = {A. V. Efimov},
     title = {On upper bounds of {Fourier--Walsh} coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {725--736},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_6_a8/}
}
TY  - JOUR
AU  - A. V. Efimov
TI  - On upper bounds of Fourier--Walsh coefficients
JO  - Matematičeskie zametki
PY  - 1969
SP  - 725
EP  - 736
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_6_a8/
LA  - ru
ID  - MZM_1969_6_6_a8
ER  - 
%0 Journal Article
%A A. V. Efimov
%T On upper bounds of Fourier--Walsh coefficients
%J Matematičeskie zametki
%D 1969
%P 725-736
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_6_a8/
%G ru
%F MZM_1969_6_6_a8
A. V. Efimov. On upper bounds of Fourier--Walsh coefficients. Matematičeskie zametki, Tome 6 (1969) no. 6, pp. 725-736. http://geodesic.mathdoc.fr/item/MZM_1969_6_6_a8/