On orthogonalization of bases
Matematičeskie zametki, Tome 6 (1969) no. 6, pp. 713-724.

Voir la notice de l'article provenant de la source Math-Net.Ru

An example of a basis for space $C$, close to the Schauder system, is constructed which, after orthogonalization by the Schmidt method, is not a basis for space $L^p$ for any $p\in[1,2)+(2,+\infty)$.
@article{MZM_1969_6_6_a7,
     author = {V. M. Veselov},
     title = {On orthogonalization of bases},
     journal = {Matemati\v{c}eskie zametki},
     pages = {713--724},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_6_a7/}
}
TY  - JOUR
AU  - V. M. Veselov
TI  - On orthogonalization of bases
JO  - Matematičeskie zametki
PY  - 1969
SP  - 713
EP  - 724
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_6_a7/
LA  - ru
ID  - MZM_1969_6_6_a7
ER  - 
%0 Journal Article
%A V. M. Veselov
%T On orthogonalization of bases
%J Matematičeskie zametki
%D 1969
%P 713-724
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_6_a7/
%G ru
%F MZM_1969_6_6_a7
V. M. Veselov. On orthogonalization of bases. Matematičeskie zametki, Tome 6 (1969) no. 6, pp. 713-724. http://geodesic.mathdoc.fr/item/MZM_1969_6_6_a7/