On the best approximation of the differentiation operator on the half-line
Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 573-582.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve a problem of S. B. Stechkin concerning the best approximation in the metric of $C$ to the operator of $k$-th order differentiation on certain classes of differentiable functions defined on the half-line, by linear operators whose norms from $L_2$ into $C$ are bounded. We consider the analogous problem for linear differential operators with constant coefficients.
@article{MZM_1969_6_5_a7,
     author = {V. N. Gabushin},
     title = {On the best approximation of the differentiation operator on the half-line},
     journal = {Matemati\v{c}eskie zametki},
     pages = {573--582},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a7/}
}
TY  - JOUR
AU  - V. N. Gabushin
TI  - On the best approximation of the differentiation operator on the half-line
JO  - Matematičeskie zametki
PY  - 1969
SP  - 573
EP  - 582
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a7/
LA  - ru
ID  - MZM_1969_6_5_a7
ER  - 
%0 Journal Article
%A V. N. Gabushin
%T On the best approximation of the differentiation operator on the half-line
%J Matematičeskie zametki
%D 1969
%P 573-582
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a7/
%G ru
%F MZM_1969_6_5_a7
V. N. Gabushin. On the best approximation of the differentiation operator on the half-line. Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 573-582. http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a7/