On sequences of Fourier coefficients of functions of H\"older classes
Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 567-572.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following theorem is proved. Let $\{\psi_l(t)\}$ be an arbitrary complete orthonormal system on $[0,1]$ and let $1/2\alpha1$. Then an $f(t)\in C_\beta$ exists for all $\beta\alpha$ such that $\sum_{k=1}^\infty|c_k(f)|^p=\infty$, $p=2/(1+2\alpha)$, where $c_k(f)=\int\limits_0^1f\psi_k\,dt$.
@article{MZM_1969_6_5_a6,
     author = {G. S. Abros'kina and B. S. Mityagin},
     title = {On sequences of {Fourier} coefficients of functions of {H\"older} classes},
     journal = {Matemati\v{c}eskie zametki},
     pages = {567--572},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a6/}
}
TY  - JOUR
AU  - G. S. Abros'kina
AU  - B. S. Mityagin
TI  - On sequences of Fourier coefficients of functions of H\"older classes
JO  - Matematičeskie zametki
PY  - 1969
SP  - 567
EP  - 572
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a6/
LA  - ru
ID  - MZM_1969_6_5_a6
ER  - 
%0 Journal Article
%A G. S. Abros'kina
%A B. S. Mityagin
%T On sequences of Fourier coefficients of functions of H\"older classes
%J Matematičeskie zametki
%D 1969
%P 567-572
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a6/
%G ru
%F MZM_1969_6_5_a6
G. S. Abros'kina; B. S. Mityagin. On sequences of Fourier coefficients of functions of H\"older classes. Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 567-572. http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a6/