Invariant random boolean fields
Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 555-566
Cet article a éte moissonné depuis la source Math-Net.Ru
In the set of finite binary sequences a Markov process is defined with discrete time in which each symbol of the binary sequence at time $t+1$ depends on the two neighboring symbols at time $t$. A proof is given of the existence and uniqueness of an invariant distribution, and its derivation is also given in a number of cases.
@article{MZM_1969_6_5_a5,
author = {Yu. K. Belyaev and Yu. I. Gromak and V. A. Malyshev},
title = {Invariant random boolean fields},
journal = {Matemati\v{c}eskie zametki},
pages = {555--566},
year = {1969},
volume = {6},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a5/}
}
Yu. K. Belyaev; Yu. I. Gromak; V. A. Malyshev. Invariant random boolean fields. Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 555-566. http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a5/