Invariant random boolean fields
Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 555-566.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the set of finite binary sequences a Markov process is defined with discrete time in which each symbol of the binary sequence at time $t+1$ depends on the two neighboring symbols at time $t$. A proof is given of the existence and uniqueness of an invariant distribution, and its derivation is also given in a number of cases.
@article{MZM_1969_6_5_a5,
     author = {Yu. K. Belyaev and Yu. I. Gromak and V. A. Malyshev},
     title = {Invariant random boolean fields},
     journal = {Matemati\v{c}eskie zametki},
     pages = {555--566},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a5/}
}
TY  - JOUR
AU  - Yu. K. Belyaev
AU  - Yu. I. Gromak
AU  - V. A. Malyshev
TI  - Invariant random boolean fields
JO  - Matematičeskie zametki
PY  - 1969
SP  - 555
EP  - 566
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a5/
LA  - ru
ID  - MZM_1969_6_5_a5
ER  - 
%0 Journal Article
%A Yu. K. Belyaev
%A Yu. I. Gromak
%A V. A. Malyshev
%T Invariant random boolean fields
%J Matematičeskie zametki
%D 1969
%P 555-566
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a5/
%G ru
%F MZM_1969_6_5_a5
Yu. K. Belyaev; Yu. I. Gromak; V. A. Malyshev. Invariant random boolean fields. Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 555-566. http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a5/