Conditions for non-oscillation of singular linear differential equations of second order
Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 633-639
Cet article a éte moissonné depuis la source Math-Net.Ru
Conditions are found in the fulfillment of which each non-trivial solution of the equation uPrime+ $u''+\beta(t)u'+\alpha(t)u=0$, where $\beta(t)\in L(a,b)$ and $(t-a)(t-b)\alpha(t)\in L(a,b)$ has not more than one zero on the interval $a\le t\le b$.
@article{MZM_1969_6_5_a14,
author = {I. T. Kiguradze},
title = {Conditions for non-oscillation of singular linear differential equations of second order},
journal = {Matemati\v{c}eskie zametki},
pages = {633--639},
year = {1969},
volume = {6},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a14/}
}
I. T. Kiguradze. Conditions for non-oscillation of singular linear differential equations of second order. Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 633-639. http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a14/