Estimate of the remainder of a cubature formula for a hypersphere
Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 627-632
Cet article a éte moissonné depuis la source Math-Net.Ru
An estimate is given for the remainder term of a cubature formula of special type for calculating an integral over an $n$-dimensional sphere. The algebraic degree of precision of the formula is the highest among formulas of this type and is equal to $4p-1$. Appearing in the estimate is an upper bound of the absolute values of all the partial derivatives of the integrand function of order $4p$ in the domain of integration.
@article{MZM_1969_6_5_a13,
author = {I. P. Mysovskikh},
title = {Estimate of the remainder of a~cubature formula for a~hypersphere},
journal = {Matemati\v{c}eskie zametki},
pages = {627--632},
year = {1969},
volume = {6},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a13/}
}
I. P. Mysovskikh. Estimate of the remainder of a cubature formula for a hypersphere. Matematičeskie zametki, Tome 6 (1969) no. 5, pp. 627-632. http://geodesic.mathdoc.fr/item/MZM_1969_6_5_a13/