Infinitely small transformations preserving the curvature of a Riemannian space
Matematičeskie zametki, Tome 6 (1969) no. 4, pp. 371-380
Cet article a éte moissonné depuis la source Math-Net.Ru
The necessary and sufficient conditions for tensor character are obtained, for which an infinitely small transformation of the space $V_n4 preserves its Riemannian curvature for any two-dimensional area. It is proved that for $n>3$ the subprojective spaces of the exceptional case, satisfying a certain condition, and only they, permit nontrivial, infinitely small conformal transformations preserving the Riemannian curvature of each two-dimensional area.
@article{MZM_1969_6_4_a1,
author = {S. I. Fedishchenko},
title = {Infinitely small transformations preserving the curvature of {a~Riemannian} space},
journal = {Matemati\v{c}eskie zametki},
pages = {371--380},
year = {1969},
volume = {6},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a1/}
}
S. I. Fedishchenko. Infinitely small transformations preserving the curvature of a Riemannian space. Matematičeskie zametki, Tome 6 (1969) no. 4, pp. 371-380. http://geodesic.mathdoc.fr/item/MZM_1969_6_4_a1/