Maximal length of circuit in a~unitary $n$-dimensional cube
Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 309-319
Voir la notice de l'article provenant de la source Math-Net.Ru
In a unit $n$-dimensional cube a circuit is constructed of length $\mathrm{const}\cdot2^n$. Thus, the order is found of the maximal length of a circuit.
@article{MZM_1969_6_3_a7,
author = {A. A. Evdokimov},
title = {Maximal length of circuit in a~unitary $n$-dimensional cube},
journal = {Matemati\v{c}eskie zametki},
pages = {309--319},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a7/}
}
A. A. Evdokimov. Maximal length of circuit in a~unitary $n$-dimensional cube. Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 309-319. http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a7/