Maximal length of circuit in a~unitary $n$-dimensional cube
Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 309-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a unit $n$-dimensional cube a circuit is constructed of length $\mathrm{const}\cdot2^n$. Thus, the order is found of the maximal length of a circuit.
@article{MZM_1969_6_3_a7,
     author = {A. A. Evdokimov},
     title = {Maximal length of circuit in a~unitary $n$-dimensional cube},
     journal = {Matemati\v{c}eskie zametki},
     pages = {309--319},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a7/}
}
TY  - JOUR
AU  - A. A. Evdokimov
TI  - Maximal length of circuit in a~unitary $n$-dimensional cube
JO  - Matematičeskie zametki
PY  - 1969
SP  - 309
EP  - 319
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a7/
LA  - ru
ID  - MZM_1969_6_3_a7
ER  - 
%0 Journal Article
%A A. A. Evdokimov
%T Maximal length of circuit in a~unitary $n$-dimensional cube
%J Matematičeskie zametki
%D 1969
%P 309-319
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a7/
%G ru
%F MZM_1969_6_3_a7
A. A. Evdokimov. Maximal length of circuit in a~unitary $n$-dimensional cube. Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 309-319. http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a7/