Linear degenerate parabolic equations of arbitrary order with a~finite region of dependence
Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 289-294
Voir la notice de l'article provenant de la source Math-Net.Ru
The Cauchy problem is considered for equations of the form $u_l-Lu=0$, where $Lu=L(i,x_1,\dots,x_n,\partial/\partial x_1,\dots,\partial x_n)u$ is an elliptic differential expression of arbitrary order which is degenerate for certain values of the arguments in the first order differential expression. Conditions are stated on the nature of the degeneracy which are sufficient for a solution of this problem to have a finite region of dependence.
@article{MZM_1969_6_3_a4,
author = {A. S. Kalashnikov},
title = {Linear degenerate parabolic equations of arbitrary order with a~finite region of dependence},
journal = {Matemati\v{c}eskie zametki},
pages = {289--294},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a4/}
}
TY - JOUR AU - A. S. Kalashnikov TI - Linear degenerate parabolic equations of arbitrary order with a~finite region of dependence JO - Matematičeskie zametki PY - 1969 SP - 289 EP - 294 VL - 6 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a4/ LA - ru ID - MZM_1969_6_3_a4 ER -
A. S. Kalashnikov. Linear degenerate parabolic equations of arbitrary order with a~finite region of dependence. Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 289-294. http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a4/