Linear degenerate parabolic equations of arbitrary order with a~finite region of dependence
Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 289-294.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem is considered for equations of the form $u_l-Lu=0$, where $Lu=L(i,x_1,\dots,x_n,\partial/\partial x_1,\dots,\partial x_n)u$ is an elliptic differential expression of arbitrary order which is degenerate for certain values of the arguments in the first order differential expression. Conditions are stated on the nature of the degeneracy which are sufficient for a solution of this problem to have a finite region of dependence.
@article{MZM_1969_6_3_a4,
     author = {A. S. Kalashnikov},
     title = {Linear degenerate parabolic equations of arbitrary order with a~finite region of dependence},
     journal = {Matemati\v{c}eskie zametki},
     pages = {289--294},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a4/}
}
TY  - JOUR
AU  - A. S. Kalashnikov
TI  - Linear degenerate parabolic equations of arbitrary order with a~finite region of dependence
JO  - Matematičeskie zametki
PY  - 1969
SP  - 289
EP  - 294
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a4/
LA  - ru
ID  - MZM_1969_6_3_a4
ER  - 
%0 Journal Article
%A A. S. Kalashnikov
%T Linear degenerate parabolic equations of arbitrary order with a~finite region of dependence
%J Matematičeskie zametki
%D 1969
%P 289-294
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a4/
%G ru
%F MZM_1969_6_3_a4
A. S. Kalashnikov. Linear degenerate parabolic equations of arbitrary order with a~finite region of dependence. Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 289-294. http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a4/