Reconstruction of a~function from the modulus of its Fourier transform
Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 257-262
Voir la notice de l'article provenant de la source Math-Net.Ru
The article discusses the possibility of reconstructing a finite real function from the modulus of its Fourier transform. It is shown that the solution of this problem is, in general, not unique. The article gives the form of all functions whose Fourier transforms have moduli identical with the given function. A number of classes in which the solution of this problem is unique are given.
@article{MZM_1969_6_3_a0,
author = {V. V. Bashurov},
title = {Reconstruction of a~function from the modulus of its {Fourier} transform},
journal = {Matemati\v{c}eskie zametki},
pages = {257--262},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a0/}
}
V. V. Bashurov. Reconstruction of a~function from the modulus of its Fourier transform. Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 257-262. http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a0/