Reconstruction of a~function from the modulus of its Fourier transform
Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 257-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article discusses the possibility of reconstructing a finite real function from the modulus of its Fourier transform. It is shown that the solution of this problem is, in general, not unique. The article gives the form of all functions whose Fourier transforms have moduli identical with the given function. A number of classes in which the solution of this problem is unique are given.
@article{MZM_1969_6_3_a0,
     author = {V. V. Bashurov},
     title = {Reconstruction of a~function from the modulus of its {Fourier} transform},
     journal = {Matemati\v{c}eskie zametki},
     pages = {257--262},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a0/}
}
TY  - JOUR
AU  - V. V. Bashurov
TI  - Reconstruction of a~function from the modulus of its Fourier transform
JO  - Matematičeskie zametki
PY  - 1969
SP  - 257
EP  - 262
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a0/
LA  - ru
ID  - MZM_1969_6_3_a0
ER  - 
%0 Journal Article
%A V. V. Bashurov
%T Reconstruction of a~function from the modulus of its Fourier transform
%J Matematičeskie zametki
%D 1969
%P 257-262
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a0/
%G ru
%F MZM_1969_6_3_a0
V. V. Bashurov. Reconstruction of a~function from the modulus of its Fourier transform. Matematičeskie zametki, Tome 6 (1969) no. 3, pp. 257-262. http://geodesic.mathdoc.fr/item/MZM_1969_6_3_a0/