Three theorems on linear ordered periodic semigroups
Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 187-196
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to some classes of linearly ordered periodic semigroups ($op$-semigroups). Theorem 1 yields an abstract characteristic of $op$-semigroups with different contractibility and reversibility. Theorem 2 describes completely pre-ordered nilsemigroups. The Dubreil result that an $op$-semigroup with commutative subsemigroup of idempotents $E$ is residual of their convex nilsubsemigroups is extended in the last theorem, to the case of some non-commutative $E$.
@article{MZM_1969_6_2_a6,
author = {E. Ya. Gabovich},
title = {Three theorems on linear ordered periodic semigroups},
journal = {Matemati\v{c}eskie zametki},
pages = {187--196},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a6/}
}
E. Ya. Gabovich. Three theorems on linear ordered periodic semigroups. Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 187-196. http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a6/