A~symplectic space with $p$-groups of operators over a~field of characteristic~$p$
Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 181-185.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a field of nonzero characteristic pne2, let $G$ be a finite $p$-group, and let $M$ be a nondegenerate finite-dimensional symplectic space over $K$ with the matching structure of a $G$-module. It is proven that if $M$ is a free $K[G]$-module then there exists in $M$ a normal basis with a canonical Gram matrix.
@article{MZM_1969_6_2_a5,
     author = {Z. I. Borevich},
     title = {A~symplectic space with $p$-groups of operators over a~field of characteristic~$p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {181--185},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a5/}
}
TY  - JOUR
AU  - Z. I. Borevich
TI  - A~symplectic space with $p$-groups of operators over a~field of characteristic~$p$
JO  - Matematičeskie zametki
PY  - 1969
SP  - 181
EP  - 185
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a5/
LA  - ru
ID  - MZM_1969_6_2_a5
ER  - 
%0 Journal Article
%A Z. I. Borevich
%T A~symplectic space with $p$-groups of operators over a~field of characteristic~$p$
%J Matematičeskie zametki
%D 1969
%P 181-185
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a5/
%G ru
%F MZM_1969_6_2_a5
Z. I. Borevich. A~symplectic space with $p$-groups of operators over a~field of characteristic~$p$. Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 181-185. http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a5/