A class of completely continuous operators in a Hilbert space of entire functions of exponential type
Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 173-179
Cet article a éte moissonné depuis la source Math-Net.Ru
Any positive Borel measure $\mu$ in $R^n$ which satisfies the condition $\sup\limits_y\mu\{x\in R^n\mid|x-y|\le1\}<\infty$ generates a Hermitian bilinear form in the Hilbert space of entire functions $f\colon C^n\to C^1$ of exponential type not exceedingtau which are square-summable on $R^n$. In this paper a criterion is given for the complete continuity of this form.
@article{MZM_1969_6_2_a4,
author = {V. Ya. Lin},
title = {A~class of completely continuous operators in {a~Hilbert} space of entire functions of exponential type},
journal = {Matemati\v{c}eskie zametki},
pages = {173--179},
year = {1969},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a4/}
}
V. Ya. Lin. A class of completely continuous operators in a Hilbert space of entire functions of exponential type. Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a4/