A~class of completely continuous operators in a~Hilbert space of entire functions of exponential type
Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 173-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

Any positive Borel measure $\mu$ in $R^n$ which satisfies the condition $\sup\limits_y\mu\{x\in R^n\mid|x-y|\le1\}\infty$ generates a Hermitian bilinear form in the Hilbert space of entire functions $f\colon C^n\to C^1$ of exponential type not exceedingtau which are square-summable on $R^n$. In this paper a criterion is given for the complete continuity of this form.
@article{MZM_1969_6_2_a4,
     author = {V. Ya. Lin},
     title = {A~class of completely continuous operators in {a~Hilbert} space of entire functions of exponential type},
     journal = {Matemati\v{c}eskie zametki},
     pages = {173--179},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a4/}
}
TY  - JOUR
AU  - V. Ya. Lin
TI  - A~class of completely continuous operators in a~Hilbert space of entire functions of exponential type
JO  - Matematičeskie zametki
PY  - 1969
SP  - 173
EP  - 179
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a4/
LA  - ru
ID  - MZM_1969_6_2_a4
ER  - 
%0 Journal Article
%A V. Ya. Lin
%T A~class of completely continuous operators in a~Hilbert space of entire functions of exponential type
%J Matematičeskie zametki
%D 1969
%P 173-179
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a4/
%G ru
%F MZM_1969_6_2_a4
V. Ya. Lin. A~class of completely continuous operators in a~Hilbert space of entire functions of exponential type. Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a4/