Diameter of the set of midpoints of chords of a~bounded closed set
Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 233-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

The estimate is obtained for the diameter $d(S_n(a))$ of the set $S_n(a)$ of midpoints of chords of length $\ge a$ ($0$) of a closed set of diameter 1 in the Euclidean space $E^n$, namely $$ d(S_n(a))\leqslant\begin{cases} 1-a^2/2,=2, \\ \sqrt{1-a^2/2},\geqslant3, \end{cases} $$ and it is shown that the inequality cannot be improved.
@article{MZM_1969_6_2_a11,
     author = {Yu. G. Dutkevich},
     title = {Diameter of the set of midpoints of chords of a~bounded closed set},
     journal = {Matemati\v{c}eskie zametki},
     pages = {233--236},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a11/}
}
TY  - JOUR
AU  - Yu. G. Dutkevich
TI  - Diameter of the set of midpoints of chords of a~bounded closed set
JO  - Matematičeskie zametki
PY  - 1969
SP  - 233
EP  - 236
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a11/
LA  - ru
ID  - MZM_1969_6_2_a11
ER  - 
%0 Journal Article
%A Yu. G. Dutkevich
%T Diameter of the set of midpoints of chords of a~bounded closed set
%J Matematičeskie zametki
%D 1969
%P 233-236
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a11/
%G ru
%F MZM_1969_6_2_a11
Yu. G. Dutkevich. Diameter of the set of midpoints of chords of a~bounded closed set. Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 233-236. http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a11/