Diameter of the set of midpoints of chords of a bounded closed set
Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 233-236
Cet article a éte moissonné depuis la source Math-Net.Ru
The estimate is obtained for the diameter $d(S_n(a))$ of the set $S_n(a)$ of midpoints of chords of length $\ge a$ ($0) of a closed set of diameter 1 in the Euclidean space $E^n$, namely $$ d(S_n(a))\leqslant\begin{cases} 1-a^2/2,&n=2, \\ \sqrt{1-a^2/2},&n\geqslant3, \end{cases} $$ and it is shown that the inequality cannot be improved.
@article{MZM_1969_6_2_a11,
author = {Yu. G. Dutkevich},
title = {Diameter of the set of midpoints of chords of a~bounded closed set},
journal = {Matemati\v{c}eskie zametki},
pages = {233--236},
year = {1969},
volume = {6},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a11/}
}
Yu. G. Dutkevich. Diameter of the set of midpoints of chords of a bounded closed set. Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 233-236. http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a11/