On an~integral inequality
Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 139-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we deduce an integral inequality which is an analog of a known two-parameter inequality of Hardy and Littlewood ([1], Theorem 382). A need for inequalities of a similar type arises, for example, in studying the imbedding of the functional spaces $B_{p,\,\theta}^l$ in the space $L_q$ if this study leads to a basis of the method of integral representations of functions.
@article{MZM_1969_6_2_a1,
     author = {V. P. Il'in},
     title = {On an~integral inequality},
     journal = {Matemati\v{c}eskie zametki},
     pages = {139--148},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a1/}
}
TY  - JOUR
AU  - V. P. Il'in
TI  - On an~integral inequality
JO  - Matematičeskie zametki
PY  - 1969
SP  - 139
EP  - 148
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a1/
LA  - ru
ID  - MZM_1969_6_2_a1
ER  - 
%0 Journal Article
%A V. P. Il'in
%T On an~integral inequality
%J Matematičeskie zametki
%D 1969
%P 139-148
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a1/
%G ru
%F MZM_1969_6_2_a1
V. P. Il'in. On an~integral inequality. Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 139-148. http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a1/