On an~integral inequality
Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 139-148
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we deduce an integral inequality which is an analog of a known two-parameter inequality of Hardy and Littlewood ([1], Theorem 382). A need for inequalities of a similar type arises, for example, in studying the imbedding of the functional spaces $B_{p,\,\theta}^l$ in the space $L_q$ if this study leads to a basis of the method of integral representations of functions.
@article{MZM_1969_6_2_a1,
author = {V. P. Il'in},
title = {On an~integral inequality},
journal = {Matemati\v{c}eskie zametki},
pages = {139--148},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a1/}
}
V. P. Il'in. On an~integral inequality. Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 139-148. http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a1/