An embedding theorem for a~limiting exponent
Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 129-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the function space $B_{p,\theta}^l(\Omega)$ of functions $f(x)$, defined on the domain $\Omega$ of a certain class and characterized by specific differential-difference properties in $L_p(\Omega)$. We prove a theorem on the embedding $B_{p,q}^l\subset\Omega)$ in the case when $l=n/p-n/q>0$ and its generalization for vector $l$, $p$, $q$.
@article{MZM_1969_6_2_a0,
     author = {O. V. Besov and V. P. Il'in},
     title = {An embedding theorem for a~limiting exponent},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a0/}
}
TY  - JOUR
AU  - O. V. Besov
AU  - V. P. Il'in
TI  - An embedding theorem for a~limiting exponent
JO  - Matematičeskie zametki
PY  - 1969
SP  - 129
EP  - 138
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a0/
LA  - ru
ID  - MZM_1969_6_2_a0
ER  - 
%0 Journal Article
%A O. V. Besov
%A V. P. Il'in
%T An embedding theorem for a~limiting exponent
%J Matematičeskie zametki
%D 1969
%P 129-138
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a0/
%G ru
%F MZM_1969_6_2_a0
O. V. Besov; V. P. Il'in. An embedding theorem for a~limiting exponent. Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 129-138. http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a0/