An embedding theorem for a~limiting exponent
Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 129-138
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the function space $B_{p,\theta}^l(\Omega)$ of functions $f(x)$, defined on the domain $\Omega$ of a certain class and characterized by specific differential-difference properties in $L_p(\Omega)$. We prove a theorem on the embedding $B_{p,q}^l\subset\Omega)$ in the case when $l=n/p-n/q>0$ and its generalization for vector $l$, $p$, $q$.
@article{MZM_1969_6_2_a0,
author = {O. V. Besov and V. P. Il'in},
title = {An embedding theorem for a~limiting exponent},
journal = {Matemati\v{c}eskie zametki},
pages = {129--138},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a0/}
}
O. V. Besov; V. P. Il'in. An embedding theorem for a~limiting exponent. Matematičeskie zametki, Tome 6 (1969) no. 2, pp. 129-138. http://geodesic.mathdoc.fr/item/MZM_1969_6_2_a0/