On the best approximation in the metric of $L$ to certain classes of functions by Haar-system polynomials
Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 47-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H_\omega$, $H_\omega^L$ be classes of functions $f(x)$ whose modulus of continuity $\omega(f;t)$ and, respectively, integral modulus of continuity $\omega(f;t)_L$ do not exceed a given modulus of continuity \omega(t)$, while $H_V$ is a~class of functions $f(x)$ whose variation $\mathop V\limits_0^1f$ fdoes not exceed a~given number $V>0$. Bounds are obtained for the upper limit of the best approximations in the metric of $L$ by Haar-system polynomials on the classes just introduced (on the class $H_\omega^L$ only when $\omega(t)=Kt$). These bounds are exact for class $H_V$ and, in case $\omega(t)$ is convex, also for the classes $H_\omega$ and $H\omega^L$.
@article{MZM_1969_6_1_a5,
     author = {N. P. Khoroshko},
     title = {On the best approximation in the metric of $L$ to certain classes of functions by {Haar-system} polynomials},
     journal = {Matemati\v{c}eskie zametki},
     pages = {47--54},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a5/}
}
TY  - JOUR
AU  - N. P. Khoroshko
TI  - On the best approximation in the metric of $L$ to certain classes of functions by Haar-system polynomials
JO  - Matematičeskie zametki
PY  - 1969
SP  - 47
EP  - 54
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a5/
LA  - ru
ID  - MZM_1969_6_1_a5
ER  - 
%0 Journal Article
%A N. P. Khoroshko
%T On the best approximation in the metric of $L$ to certain classes of functions by Haar-system polynomials
%J Matematičeskie zametki
%D 1969
%P 47-54
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a5/
%G ru
%F MZM_1969_6_1_a5
N. P. Khoroshko. On the best approximation in the metric of $L$ to certain classes of functions by Haar-system polynomials. Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 47-54. http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a5/