On the best approximation in the metric of $L$ to certain classes of functions by Haar-system polynomials
Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 47-54
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H_\omega$, $H_\omega^L$ be classes of functions $f(x)$ whose modulus of continuity $\omega(f;t)$ and, respectively, integral modulus of continuity $\omega(f;t)_L$ do not exceed a given modulus of continuity \omega(t)$, while $H_V$ is a~class of functions $f(x)$ whose variation $\mathop V\limits_0^1f$ fdoes not exceed a~given number $V>0$. Bounds are obtained for the upper limit of the best approximations in the metric of $L$ by Haar-system polynomials on the classes just introduced (on the class $H_\omega^L$ only when $\omega(t)=Kt$). These bounds are exact for class $H_V$ and, in case $\omega(t)$ is convex, also for the classes $H_\omega$ and $H\omega^L$.
@article{MZM_1969_6_1_a5,
author = {N. P. Khoroshko},
title = {On the best approximation in the metric of $L$ to certain classes of functions by {Haar-system} polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {47--54},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a5/}
}
TY - JOUR AU - N. P. Khoroshko TI - On the best approximation in the metric of $L$ to certain classes of functions by Haar-system polynomials JO - Matematičeskie zametki PY - 1969 SP - 47 EP - 54 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a5/ LA - ru ID - MZM_1969_6_1_a5 ER -
N. P. Khoroshko. On the best approximation in the metric of $L$ to certain classes of functions by Haar-system polynomials. Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 47-54. http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a5/