Approximation of differentiable functions by Fourier--Hermite sums
Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 35-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is derived for the divergence of Fourier–Hermite sums from the functions giving rise to them, for functions $f(x)$ whose $r$-th derivatives have a modulus of continuity not exceeding a given majorizing modulus of continuity.
@article{MZM_1969_6_1_a4,
     author = {V. A. Abilov and S. A. Agahanov},
     title = {Approximation of differentiable functions by {Fourier--Hermite} sums},
     journal = {Matemati\v{c}eskie zametki},
     pages = {35--46},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a4/}
}
TY  - JOUR
AU  - V. A. Abilov
AU  - S. A. Agahanov
TI  - Approximation of differentiable functions by Fourier--Hermite sums
JO  - Matematičeskie zametki
PY  - 1969
SP  - 35
EP  - 46
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a4/
LA  - ru
ID  - MZM_1969_6_1_a4
ER  - 
%0 Journal Article
%A V. A. Abilov
%A S. A. Agahanov
%T Approximation of differentiable functions by Fourier--Hermite sums
%J Matematičeskie zametki
%D 1969
%P 35-46
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a4/
%G ru
%F MZM_1969_6_1_a4
V. A. Abilov; S. A. Agahanov. Approximation of differentiable functions by Fourier--Hermite sums. Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 35-46. http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a4/