Uniqueness theorem for convex surfaces
Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 115-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof is given of the following assertion: two closed convex analytic surfaces in three-dimensional Euclidean space are equal if their areas and lengths of boundaries of orthogonal projections onto any plane coincide.
@article{MZM_1969_6_1_a13,
     author = {Yu. E. Anikonov},
     title = {Uniqueness theorem for convex surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {115--117},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a13/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
TI  - Uniqueness theorem for convex surfaces
JO  - Matematičeskie zametki
PY  - 1969
SP  - 115
EP  - 117
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a13/
LA  - ru
ID  - MZM_1969_6_1_a13
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%T Uniqueness theorem for convex surfaces
%J Matematičeskie zametki
%D 1969
%P 115-117
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a13/
%G ru
%F MZM_1969_6_1_a13
Yu. E. Anikonov. Uniqueness theorem for convex surfaces. Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 115-117. http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a13/