Construction of an~asymptotic expansion for the solution of a~linear system of equations of neutral type with a~small delay in the absence of a~boundary layer
Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 109-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we simplify the algorithm for constructing the asymptotic expansion for the solution of a linear system of neutral type at a large distance from the origin. After using the Laplace transformation to determine the asymptotic expansion near the initial point, we succeed in reducing the problem of determining the initial conditions to the computation of the residues of certain functions for which we have recurrence formulas.
@article{MZM_1969_6_1_a12,
     author = {V. I. Rozhkov},
     title = {Construction of an~asymptotic expansion for the solution of a~linear system of equations of neutral type with a~small delay in the absence of a~boundary layer},
     journal = {Matemati\v{c}eskie zametki},
     pages = {109--113},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a12/}
}
TY  - JOUR
AU  - V. I. Rozhkov
TI  - Construction of an~asymptotic expansion for the solution of a~linear system of equations of neutral type with a~small delay in the absence of a~boundary layer
JO  - Matematičeskie zametki
PY  - 1969
SP  - 109
EP  - 113
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a12/
LA  - ru
ID  - MZM_1969_6_1_a12
ER  - 
%0 Journal Article
%A V. I. Rozhkov
%T Construction of an~asymptotic expansion for the solution of a~linear system of equations of neutral type with a~small delay in the absence of a~boundary layer
%J Matematičeskie zametki
%D 1969
%P 109-113
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a12/
%G ru
%F MZM_1969_6_1_a12
V. I. Rozhkov. Construction of an~asymptotic expansion for the solution of a~linear system of equations of neutral type with a~small delay in the absence of a~boundary layer. Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 109-113. http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a12/