Ritz method for equations with small parameters for higher derivatives
Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 91-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of convergence of the Ritz method is considered for positive definite operational equations of the form $a_\varepsilon u\equiv(\varepsilon A_1+A_0)u=f$ containing small parameters $\varepsilon$ for the principal part. For specific natural conditions it is proved that the Ritz method, used for an approximate solution to such equations, converges to an exact solution in a metric with quadratic form uniformly with respect to the parameter $\varepsilon$.
@article{MZM_1969_6_1_a10,
     author = {L. A. Kalyakin},
     title = {Ritz method for equations with small parameters for higher derivatives},
     journal = {Matemati\v{c}eskie zametki},
     pages = {91--96},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a10/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Ritz method for equations with small parameters for higher derivatives
JO  - Matematičeskie zametki
PY  - 1969
SP  - 91
EP  - 96
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a10/
LA  - ru
ID  - MZM_1969_6_1_a10
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Ritz method for equations with small parameters for higher derivatives
%J Matematičeskie zametki
%D 1969
%P 91-96
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a10/
%G ru
%F MZM_1969_6_1_a10
L. A. Kalyakin. Ritz method for equations with small parameters for higher derivatives. Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 91-96. http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a10/