Ritz method for equations with small parameters for higher derivatives
Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 91-96
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of convergence of the Ritz method is considered for positive definite operational equations of the form $a_\varepsilon u\equiv(\varepsilon A_1+A_0)u=f$ containing small parameters $\varepsilon$ for the principal part. For specific natural conditions it is proved that the Ritz method, used for an approximate solution to such equations, converges to an exact solution in a metric with quadratic form uniformly with respect to the parameter $\varepsilon$.
@article{MZM_1969_6_1_a10,
author = {L. A. Kalyakin},
title = {Ritz method for equations with small parameters for higher derivatives},
journal = {Matemati\v{c}eskie zametki},
pages = {91--96},
year = {1969},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a10/}
}
L. A. Kalyakin. Ritz method for equations with small parameters for higher derivatives. Matematičeskie zametki, Tome 6 (1969) no. 1, pp. 91-96. http://geodesic.mathdoc.fr/item/MZM_1969_6_1_a10/