On a~theorem of Fuchs
Matematičeskie zametki, Tome 5 (1969) no. 6, pp. 723-731.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the method used by Fuchs to prove the completeness of the system of functions $\{e^{-t}t^\alpha\nu\}$, $a_\nu>0$, $a_{\nu+1}-a_\nu\ge c>0$, $\nu=1,2,\dots$ in $L^2(0,\infty)$ allows us to prove a more general statement.
@article{MZM_1969_5_6_a9,
     author = {G. V. Badalyan},
     title = {On a~theorem of {Fuchs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {723--731},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_6_a9/}
}
TY  - JOUR
AU  - G. V. Badalyan
TI  - On a~theorem of Fuchs
JO  - Matematičeskie zametki
PY  - 1969
SP  - 723
EP  - 731
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_6_a9/
LA  - ru
ID  - MZM_1969_5_6_a9
ER  - 
%0 Journal Article
%A G. V. Badalyan
%T On a~theorem of Fuchs
%J Matematičeskie zametki
%D 1969
%P 723-731
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_6_a9/
%G ru
%F MZM_1969_5_6_a9
G. V. Badalyan. On a~theorem of Fuchs. Matematičeskie zametki, Tome 5 (1969) no. 6, pp. 723-731. http://geodesic.mathdoc.fr/item/MZM_1969_5_6_a9/