The self-adjointness conditions for a~higher order differential operator with an~operator coefficient
Matematičeskie zametki, Tome 5 (1969) no. 6, pp. 697-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

Certain sufficient conditions are found for self-adjointness of the differential operator generated by the expressionl $$ l(y)=(-1)^ny^{2n}+Q(x)y, \quad -\infty\infty, $$ where $Q(x)$ is for each fixed value of $x$ a bounded self-adjoint operator acting from the Hilbert space $H$ into $H$, and $y(x)$ is a vector function of $H_1$ for which $$ \int_{-\infty}^\infty\|y\|_H^2\,dx\infty. $$
@article{MZM_1969_5_6_a6,
     author = {M. G. Gimadislamov},
     title = {The self-adjointness conditions for a~higher order differential operator with an~operator coefficient},
     journal = {Matemati\v{c}eskie zametki},
     pages = {697--707},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_6_a6/}
}
TY  - JOUR
AU  - M. G. Gimadislamov
TI  - The self-adjointness conditions for a~higher order differential operator with an~operator coefficient
JO  - Matematičeskie zametki
PY  - 1969
SP  - 697
EP  - 707
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_6_a6/
LA  - ru
ID  - MZM_1969_5_6_a6
ER  - 
%0 Journal Article
%A M. G. Gimadislamov
%T The self-adjointness conditions for a~higher order differential operator with an~operator coefficient
%J Matematičeskie zametki
%D 1969
%P 697-707
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_6_a6/
%G ru
%F MZM_1969_5_6_a6
M. G. Gimadislamov. The self-adjointness conditions for a~higher order differential operator with an~operator coefficient. Matematičeskie zametki, Tome 5 (1969) no. 6, pp. 697-707. http://geodesic.mathdoc.fr/item/MZM_1969_5_6_a6/