The self-adjointness conditions for a higher order differential operator with an operator coefficient
Matematičeskie zametki, Tome 5 (1969) no. 6, pp. 697-707
Cet article a éte moissonné depuis la source Math-Net.Ru
Certain sufficient conditions are found for self-adjointness of the differential operator generated by the expressionl $$ l(y)=(-1)^ny^{2n}+Q(x)y, \quad -\infty<x<\infty, $$ where $Q(x)$ is for each fixed value of $x$ a bounded self-adjoint operator acting from the Hilbert space $H$ into $H$, and $y(x)$ is a vector function of $H_1$ for which $$ \int_{-\infty}^\infty\|y\|_H^2\,dx<\infty. $$
@article{MZM_1969_5_6_a6,
author = {M. G. Gimadislamov},
title = {The self-adjointness conditions for a~higher order differential operator with an~operator coefficient},
journal = {Matemati\v{c}eskie zametki},
pages = {697--707},
year = {1969},
volume = {5},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_6_a6/}
}
M. G. Gimadislamov. The self-adjointness conditions for a higher order differential operator with an operator coefficient. Matematičeskie zametki, Tome 5 (1969) no. 6, pp. 697-707. http://geodesic.mathdoc.fr/item/MZM_1969_5_6_a6/