Series of a~system ${\varphi(nx)}$
Matematičeskie zametki, Tome 5 (1969) no. 5, pp. 527-532.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several theorems on series of systems $\{\varphi(nx)\}$ are proved. It is shown, in particular, that there exists a continuous function $\varphi(x)$ such that a series of the system $\{\varphi(2^nx)\}$ with coefficients in $l_2$ does not converge in measure on $[0,1]$. This provides the answer to a problem raised by P. L. Ul'yanov.
@article{MZM_1969_5_5_a3,
     author = {E. M. Nikishin},
     title = {Series of a~system ${\varphi(nx)}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {527--532},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_5_a3/}
}
TY  - JOUR
AU  - E. M. Nikishin
TI  - Series of a~system ${\varphi(nx)}$
JO  - Matematičeskie zametki
PY  - 1969
SP  - 527
EP  - 532
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_5_a3/
LA  - ru
ID  - MZM_1969_5_5_a3
ER  - 
%0 Journal Article
%A E. M. Nikishin
%T Series of a~system ${\varphi(nx)}$
%J Matematičeskie zametki
%D 1969
%P 527-532
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_5_a3/
%G ru
%F MZM_1969_5_5_a3
E. M. Nikishin. Series of a~system ${\varphi(nx)}$. Matematičeskie zametki, Tome 5 (1969) no. 5, pp. 527-532. http://geodesic.mathdoc.fr/item/MZM_1969_5_5_a3/