Liouville theorems for the solution of a second-order linear parabolic equation with discontinuous coefficients
Matematičeskie zametki, Tome 5 (1969) no. 5, pp. 599-606
Cet article a éte moissonné depuis la source Math-Net.Ru
Theorems of Liouville type are proved for a very general second-order parabolic equation. Smoothness conditions are not imposed on the coefficients; however, it is required that a Cordes condition be satisfied which denotes the nearness to the identity of the coefficient matrix for the second derivatives.
@article{MZM_1969_5_5_a12,
author = {R. Ya. Glagoleva},
title = {Liouville theorems for the solution of a~second-order linear parabolic equation with discontinuous coefficients},
journal = {Matemati\v{c}eskie zametki},
pages = {599--606},
year = {1969},
volume = {5},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_5_a12/}
}
TY - JOUR AU - R. Ya. Glagoleva TI - Liouville theorems for the solution of a second-order linear parabolic equation with discontinuous coefficients JO - Matematičeskie zametki PY - 1969 SP - 599 EP - 606 VL - 5 IS - 5 UR - http://geodesic.mathdoc.fr/item/MZM_1969_5_5_a12/ LA - ru ID - MZM_1969_5_5_a12 ER -
R. Ya. Glagoleva. Liouville theorems for the solution of a second-order linear parabolic equation with discontinuous coefficients. Matematičeskie zametki, Tome 5 (1969) no. 5, pp. 599-606. http://geodesic.mathdoc.fr/item/MZM_1969_5_5_a12/