Bari bases of subspaces
Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 461-469.

Voir la notice de l'article provenant de la source Math-Net.Ru

We shall establish certain characteristic properties of Bari bases of subspaces. We shall show that a complete sequence of finite-dimensional subspaces $\{\mathfrak{R}_j\}_1^\infty$ is a Bari basis if and only if each sequence $\{\psi_j\}_1^\infty$ ($\psi_j\in\mathfrak{R}_j$, $||\psi_j||=1$) is a Bari basis of its own closed linear hull.
@article{MZM_1969_5_4_a9,
     author = {A. S. Markus},
     title = {Bari bases of subspaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {461--469},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a9/}
}
TY  - JOUR
AU  - A. S. Markus
TI  - Bari bases of subspaces
JO  - Matematičeskie zametki
PY  - 1969
SP  - 461
EP  - 469
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a9/
LA  - ru
ID  - MZM_1969_5_4_a9
ER  - 
%0 Journal Article
%A A. S. Markus
%T Bari bases of subspaces
%J Matematičeskie zametki
%D 1969
%P 461-469
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a9/
%G ru
%F MZM_1969_5_4_a9
A. S. Markus. Bari bases of subspaces. Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 461-469. http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a9/