Bari bases of subspaces
Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 461-469
Cet article a éte moissonné depuis la source Math-Net.Ru
We shall establish certain characteristic properties of Bari bases of subspaces. We shall show that a complete sequence of finite-dimensional subspaces $\{\mathfrak{R}_j\}_1^\infty$ is a Bari basis if and only if each sequence $\{\psi_j\}_1^\infty$ ($\psi_j\in\mathfrak{R}_j$, $||\psi_j||=1$) is a Bari basis of its own closed linear hull.
@article{MZM_1969_5_4_a9,
author = {A. S. Markus},
title = {Bari bases of subspaces},
journal = {Matemati\v{c}eskie zametki},
pages = {461--469},
year = {1969},
volume = {5},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a9/}
}
A. S. Markus. Bari bases of subspaces. Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 461-469. http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a9/