Conditions of convergence of boundary values of Cauchy type integrals
Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 441-448.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a domain $G$ bounded by a rectifiable Jordan curve $\gamma$ let be given a sequence of analytic functions $\{f_n(z)\}$ representable by Cauchy–Lebesgue type integrals $$ f_n(z)=\int_\gamma\frac{\omega_n(\zeta)}{\zeta-z}d\zeta. $$ A theorem is established which enables one to determine from the convergence in measure of $\{\omega_n(\zeta)\}$ on a set $e\subset\gamma$ whether or not there is convergence in measure on the same set of $\{f_n(\zeta)\}$, the angular boundary values of the functions $f_n(z)$.
@article{MZM_1969_5_4_a6,
     author = {G. Ts. Tumarkin},
     title = {Conditions of convergence of boundary values of {Cauchy} type integrals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {441--448},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a6/}
}
TY  - JOUR
AU  - G. Ts. Tumarkin
TI  - Conditions of convergence of boundary values of Cauchy type integrals
JO  - Matematičeskie zametki
PY  - 1969
SP  - 441
EP  - 448
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a6/
LA  - ru
ID  - MZM_1969_5_4_a6
ER  - 
%0 Journal Article
%A G. Ts. Tumarkin
%T Conditions of convergence of boundary values of Cauchy type integrals
%J Matematičeskie zametki
%D 1969
%P 441-448
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a6/
%G ru
%F MZM_1969_5_4_a6
G. Ts. Tumarkin. Conditions of convergence of boundary values of Cauchy type integrals. Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 441-448. http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a6/