Conditions of convergence of boundary values of Cauchy type integrals
Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 441-448
Voir la notice de l'article provenant de la source Math-Net.Ru
In a domain $G$ bounded by a rectifiable Jordan curve $\gamma$ let be given a sequence of analytic
functions $\{f_n(z)\}$ representable by Cauchy–Lebesgue type integrals
$$
f_n(z)=\int_\gamma\frac{\omega_n(\zeta)}{\zeta-z}d\zeta.
$$
A theorem is established which enables one to determine from the convergence in measure of
$\{\omega_n(\zeta)\}$ on a set $e\subset\gamma$ whether or not there is convergence
in measure on the same set of $\{f_n(\zeta)\}$, the angular boundary values of the functions $f_n(z)$.
@article{MZM_1969_5_4_a6,
author = {G. Ts. Tumarkin},
title = {Conditions of convergence of boundary values of {Cauchy} type integrals},
journal = {Matemati\v{c}eskie zametki},
pages = {441--448},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {1969},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a6/}
}
G. Ts. Tumarkin. Conditions of convergence of boundary values of Cauchy type integrals. Matematičeskie zametki, Tome 5 (1969) no. 4, pp. 441-448. http://geodesic.mathdoc.fr/item/MZM_1969_5_4_a6/